Master of Science in Biomedical Engineering - Biomedical Technology Development Postgraduate Programme By Drexel University |TopUniversities

Master of Science in Biomedical Engineering - Biomedical Technology Development

Main Subject Area

Anatomy and PhysiologyMain Subject Area

Programme overview

Main Subject

Anatomy and Physiology

Study Level

Masters

The overall objective of the School of Biomedical Engineering, Science and Health Systems is to provide multidisciplinary programs offering an instructional core curriculum and research in selected areas. The core requirements for the master's in Biomedical engineering include a minimum of 45 course credits (most courses carry three credits each) and an optional research thesis. While a research thesis is highly recommended a Non-Thesis option is also available. Students who elect to pursue a Non-thesis option are required to complete a minimum of 51 credits of coursework to be approved by the School Graduate Advisor. Students admitted into the biomedical engineering program are individuals who have earned undergraduate degrees in one of the traditional engineering areas. Students with undergraduate degrees in computer science; physics; chemistry; bio-chemistry, or mathematics may qualify for admission into the graduate biomedical science program. The core curriculum provides the necessary training in medical science, modeling and simulation and biomedical engineering applications. Students may focus their scholarly efforts on advanced coursework and research in such areas as Biomedical Imaging, Biomedical Instrumentation, Biomechanics, Biomaterials, Human Performance, Biomedical Signals, Neuroengineering, and Tissue Engineering. While such concentrations are facilitated, the School does not offer formal certification in these sub-areas and the final degree is MS in Biomedical Engineering. Biomedical Technology Development This concentration area and certificate program aims to provide engineers with the comprehensive education and training necessary to succeed in careers in business, industry, non-profit organizations, and government agencies involving biomedical technology development. The concentration area in Biomedical Technology Development is a professional degree program and follows the School of Biomedical Engineering, Science and Health Systems' established procedures for a non-thesis option master's degree. Students interested in this concentration should develop a plan of study in consultation with the concentration coordinator, Dr. Kambiz Pourrezaei, before the beginning of the second term. The electives should also be chosen in consultation with the concentration coordinator.

Programme overview

Main Subject

Anatomy and Physiology

Study Level

Masters

The overall objective of the School of Biomedical Engineering, Science and Health Systems is to provide multidisciplinary programs offering an instructional core curriculum and research in selected areas. The core requirements for the master's in Biomedical engineering include a minimum of 45 course credits (most courses carry three credits each) and an optional research thesis. While a research thesis is highly recommended a Non-Thesis option is also available. Students who elect to pursue a Non-thesis option are required to complete a minimum of 51 credits of coursework to be approved by the School Graduate Advisor. Students admitted into the biomedical engineering program are individuals who have earned undergraduate degrees in one of the traditional engineering areas. Students with undergraduate degrees in computer science; physics; chemistry; bio-chemistry, or mathematics may qualify for admission into the graduate biomedical science program. The core curriculum provides the necessary training in medical science, modeling and simulation and biomedical engineering applications. Students may focus their scholarly efforts on advanced coursework and research in such areas as Biomedical Imaging, Biomedical Instrumentation, Biomechanics, Biomaterials, Human Performance, Biomedical Signals, Neuroengineering, and Tissue Engineering. While such concentrations are facilitated, the School does not offer formal certification in these sub-areas and the final degree is MS in Biomedical Engineering. Biomedical Technology Development This concentration area and certificate program aims to provide engineers with the comprehensive education and training necessary to succeed in careers in business, industry, non-profit organizations, and government agencies involving biomedical technology development. The concentration area in Biomedical Technology Development is a professional degree program and follows the School of Biomedical Engineering, Science and Health Systems' established procedures for a non-thesis option master's degree. Students interested in this concentration should develop a plan of study in consultation with the concentration coordinator, Dr. Kambiz Pourrezaei, before the beginning of the second term. The electives should also be chosen in consultation with the concentration coordinator.

Admission Requirements

6.5+
Acceptance for graduate study at Drexel University requires a four-year bachelor's degree from a regionally accredited institution in the United States or an equivalent international institution. Although admission requirements vary by program, regular acceptance typically requires a minimum cumulative grade point average of 3.0 (B) for the last two years of undergraduate work. The average for any graduate work must be at least 3.0. 

Jan-2000

Domestic
0 USD
International
0 USD

Scholarships

Selecting the right scholarship can be a daunting process. With countless options available, students often find themselves overwhelmed and confused. The decision can be especially stressful for those facing financial constraints or pursuing specific academic or career goals.

To help students navigate this challenging process, we recommend the following articles:

More programmes from the university

Postgrad Programmes 163